Professional Training

Monitoring Volcanoes and Magma Movements

edX, Online
Length
8 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Length
8 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Monitoring Volcanoes and Magma Movements

The course gives an introduction to volcano monitoring techniques, magma movements and volcano unrest. It also presents some aspects of why volcanoes are dangerous and volcanic hazards. Volcano monitoring relies on diverse approaches to infer the state of a volcano so many different instruments and techniques are used to monitor volcanoes. Predicting eruptions or forecasting future activity of a volcano is based on monitoring data. If activity level rises above normal the volcano is in a state of unrest. Magma often intrudes in the roots of volcanoes prior to eruptions. This process generates earthquakes as stress level is increased and ground deformation as the volcano expands in response to additional mass in its subsurface. Seismology and geodetic measurements on the surface of the volcano are thus key to monitoring subsurface conditions.

As magma, molten rock inside volcanoes, approaches the surface it releases volcanic gas that finds its way to the surface, and geothermal activity can change. In addition to ground-based techniques, satellite observations are extensively used. The main monitoring techniques for volcanoes are explained in the course, with the aim that students understand both the concept of volcanic unrest and how it can be monitored, how eruptions can be monitored, and signs of volcanic eruptions as seen on instruments.

Upcoming start dates

1 start date available

Start anytime

  • Self-Paced Online
  • Online
  • English

Suitability - Who should attend?

Prerequisites

None

Outcome / Qualification etc.

What you'll learn

  • Develop an understanding of volcanic plumbing systems and magma movements in volcanoes.
  • Develop an understanding of the concept of volcanic unrest.
  • Become familiar with volcano monitoring techniques.
  • Understand how seismology is used to study volcano earthquakes.
  • Understand how volcano geodesy is used to map ground deformation on volcanoes.
  • Understand what volcanic gas tells us about magma movements.
  • Understand what produces variations in geothermal activity on volcanoes.
  • Understand how satellites can be used effectively to map changes on volcanoes.
  • Develop an understanding of key properties of magma relevant to volcano models.
  • Develop an understanding of how eruptions are monitored and how eruption rates can be evaluated.
  • Develop an understanding of models used to interpret volcano deformation, including response to a pressure increase in a spherical source (the Mogi model).
  • Develop an understanding of how volcano observations are fit to models.
  • Gain knowledge about a number of volcanic unrest periods and eruptions in Iceland and elsewhere.
  • Gain knowledge about how to design a volcano monitoring network and use monitoring data to mitigate the influence of volcanic hazards.

Training Course Content

Introduction, volcanic plumbing systems and volcano seismology

We explore models of volcano interiors and how magma (molten rocks) finds its way to the surface, often through a complicated volcanic plumbing system. We learn about how seismology can track earthquakes due to magma movements and increased stress in volcano roots.

Volcano geodesy

We get an introduction to techniques that can measure ground deformation on volcanoes with millimeter-level accuracy. This includes both geodetic measurements using Global Navigation and Satellite Systems (GNSS) and interferometric analysis of synthetic aperture radar satellite images (InSAR), as well as other techniques.

Magma, volcanic gas and eruptions

We learn about the properties of magma and gain an understanding of volcanic gas, how it can be measured and what it can tell us. We learn how one can monitor eruptions and measure how much magma is erupted.

Volcano deformation models

We are introduced to models used to interpret ground deformation data, in terms of sources of increased pressure, or sources of increased volume of magma, at depth in volcanoes.

Case studies of volcano unrest and eruptions

We look at monitoring data from selected eruptions, including the 2010 Eyjafjallajökull eruption in Iceland that closed Europe’s airspace. We gain an understanding of what these data could tell us about magma movements in volcano roots.

More case studies and summary

We are exposed to more case studies of volcano unrest and eruptions. We sum up the content of the course by exploring the critical elements of a volcano monitoring network and how joint interpretation of diverse data sets is essential.

Course delivery details

This course is offered through The University of Iceland, a partner institute of EdX.

3-5 hours per week

Expenses

  • Verified Track -$50
  • Audit Track - Free
Ads