Professional Training

Quantum Mechanics for Scientists and Engineers 1

edX, Online
Length
9 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Length
9 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Quantum Mechanics for Scientists and Engineers 1

This 9 week course aims to teach quantum mechanics to anyone with a reasonable college-level understanding of physical science or engineering. Quantum mechanics was once mostly of interest to physicists, chemists and other basic scientists. Now the concepts and techniques of quantum mechanics are essential in many areas of engineering and science such as materials science, nanotechnology, electronic devices, and photonics.

This course is a substantial introduction to quantum mechanics and how to use it. It is specifically designed to be accessible not only to physicists but also to students and technical professionals over a wide range of science and engineering backgrounds.

Upcoming start dates

1 start date available

Start anytime

  • Self-Paced Online
  • Online
  • English

Suitability - Who should attend?

Prerequisites

The course is approximately at the level of a first quantum mechanics class in physics at a third-year college level or above, but it is specifically designed to be suitable and useful also for those from other science and engineering disciplines.

The course emphasizes conceptual understanding rather than a heavily mathematical approach, but some amount of mathematics is essential for understanding and using quantum mechanics. The course presumes a mathematics background that includes basic algebra and trigonometry, functions, vectors, matrices, complex numbers, ordinary differential and integral calculus, and ordinary and partial differential equations.

In physics, students should understand elementary classical mechanics (Newton’s Laws) and basic ideas in electricity and magnetism at a level typical of first-year college physics. (The course explicitly does not require knowledge of more advanced concepts in classical mechanics, such as Hamiltonian or Lagrangian approaches, or in electromagnetism, such as Maxwell’s equations.) Some introductory exposure to modern physics, such as the ideas of electrons, photons, and atoms, is helpful but not required.

The course includes an optional and ungraded “refresher” background mathematics section that reviews and gives participants a chance to practice all the necessary math background background. Introductory background material on key physics concepts is also presented at the beginning of the course.

Outcome / Qualification etc.

What you'll learn

  • A conceptual understanding of quantum mechanics
  • Key physics concepts
  • Key ideas in using quantum mechanical waves
  • Mathematics of quantum mechanical waves
  • Quantum mechanics of systems that change in time
  • Measurements in quantum mechanics
  • The uncertainty principle
  • The hydrogen atom
  • How to solve real problems

Training Course Content

Introduction to quantum mechanics

How quantum mechanics is important in the everyday world, the bizarre aspects and continuing evolution of quantum mechanics, and how we need it for engineering much of modern technology.

Schroedinger’s wave equation

Getting to Schroedinger’s wave equation. Key ideas in using quantum mechanical waves — probability densities, linearity. The "two slit" experiment and its paradoxes.

Getting "quantum" behavior

The "particle in a box", eigenvalues and eigenfunctions. Mathematics of quantum mechanical waves.

Quantum mechanics of systems that change in time

Time variation by superposition of wave functions. The harmonic oscillator. Movement in quantum mechanics — wave packets, group velocity and particle current.

Measurement in quantum mechanics

Operators in quantum mechanics — the quantum-mechanical Hamiltonian. Measurement and its paradoxes — the Stern-Gerlach experiment.

Writing down quantum mechanics simply

A simple general way of looking at the mathematics of quantum mechanics — functions, operators, matrices and Dirac notation. Operators and measurable quantities. The uncertainty principle.

The hydrogen atom

Angular momentum in quantum mechanics — atomic orbitals. Quantum mechanics with more than one particle. Solving for the the hydrogen atom. Nature of the states of atoms.

How to solve real problems

Approximation methods in quantum mechanics.

Course delivery details

This course is offered through Stanford University, a partner institute of EdX.

5-10 hours per week

Expenses

  • Verified Track -$129
  • Audit Track - Free
Ads